Логнормальное распределение

Вычисляет и строи графики плотности вероятности и функции распределения логарифмически нормального распределения. Также позволяет вычислить квантили логнормального распределения.

Este contenido se encuentra disponible en Русский

Aquí puede editar una traducción de Русский a Español

Este contenido se encuentra disponible en English

Aquí puede editar una traducción de English a Español

Непрерывная случайная величина имеет логнормальное распределение, если ее логарифм подчинен нормальному закону распределения.

Плотность вероятности логарифмически нормального распределения выражается следующей формулой:

{\frac {1}{x\sigma {\sqrt {2\pi }}}}\ e^{-{\frac {\left(\ln x-\mu \right)^{2}}{2\sigma ^{2}}}}

Создано на PLANETCALC

Логнормальное распределение

Знаков после запятой: 5
Плотность вероятности
 
Значение функции распределения
 
График плотности вероятности
Функция распределения

Функция распределения имеет следующий вид:

{\frac {1}{2}}+{\frac {1}{2}}\operatorname {erf} {\Big [}{\frac {\ln x-\mu }{{\sqrt {2}}\sigma }}{\Big ]}

Для вычисления квантилей лог-нормального распределения можно использовать следующий калькулятор:

Создано на PLANETCALC

Квантильная функция логнормального распределения

Знаков после запятой: 2
Квантиль
 

Comentarios

Calculadoras similares

201 calculadoras en total.